Skip to main content
Log in

The occurrence process of chromatophores in three body color strains of the ornamental shrimp Neocaridina denticulata sinensis

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Neocaridina denticulata sinensis is an important ornamental shrimp. The red, yellow, and blue strains were obtained by artificial breeding. To understand the relationship between body color and chromatophores, the occurrence process of chromatophores was observed at a microscopic level. The type, shape, size, quantity, and distribution of chromatophores were also analyzed from the metanauplius stage to the post-larva stage. The results showed that the chromatophores of red, yellow, and blue strains were mainly erythrophores, cyanophores, and xanthophores, respectively. The first chromatophores to develop in the three strains were the erythrophores, and they showed a dendritic, spotted, and common circular in the red, blue, and yellow strains, respectively. The second kind of chromatophores in the blue strain was granular cyanophores, which appeared at the membrane-zoea stage. The yellow strain had the third kind of chromatophores, which were flaky and velvety xanthophores. Flake and snowflake leucophores were also observed in the red and yellow strains. This study shows that the type, shape, size, and distribution of chromatophores have a close relation to the body color of N. denticulata sinensis. It also provides a theoretical basis for analyzing the regulatory mechanism of body color formation and artificial breeding of N. denticulata sinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alves DFR, López Greco LS, Barros-Alves SP et al (2019) Sexual system, reproductive cycle and embryonic development of the red-striped shrimp Lysmata vittata, an invader in the western Atlantic Ocean. PLoS ONE 14(1):e0210723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagnara JT, Matsumoto J (2007) Comparative Anatomy and Physiology of Pigment Cells in Nonmammalian Tissues. In: James J (ed) The pigmentary system: physiology and pathophysiolog. Blackwell Publishing, Press, England, pp 11–59

    Google Scholar 

  • Bauer RT (2005) Remarkable shrimps-adaptations and natural history of the carideans. J Crustac Biol 25(2):319

    Article  Google Scholar 

  • Berticat O, Nègre-Sadargues G, Castillo R (2000) The metabolism of astaxanthin during the embryonic development of the crayfish Astacus leptodactylus Eschscholtz (Crustacea, Astacidea). Comp Biochem Physiol B: Biochem Mol Biol 127(3):309–318

    Article  CAS  Google Scholar 

  • Castillo R (1980) On the transformation of β-carotene 15, 15’-3H2 into astaxanthin by the hermit crab Clibanarius erythropus latreille (1818) crustacea, decapoda, anomoura. Comp Biochem Physiol A Physiol 66(4):695–697

    Article  Google Scholar 

  • Chayen NE, Cianci M, Grossmann JG et al (2003) Unravelling the structural chemistry of the colouration mechanism in lobster shell. Acta Crystallogra Sec d: Biol Crystallogr 59(12):2072–2082

    Article  Google Scholar 

  • Costa J, Brito T, Neto J et al (2021) Reproductive cycle and embryonic development of the ornamental shrimp Lysmata ankeri. Aquaculture 543(4):736–994

    Google Scholar 

  • Fang N, Wang C, Liu X et al (2019) De novo synthesis of astaxanthin: From organisms to genes. Trends Food Sci Technol 92(10):162–171

    Article  CAS  Google Scholar 

  • Fernlund P, Josefsson L (1968) Chromactivating hormones of Pandalus borealis isolation and purification of the red-pigment-concentrating hormone. Biochimica Biophysica Acta Gen Sub 158(2):262–273

    Article  CAS  Google Scholar 

  • Fernlund P (1976) Structure of a light-adapting hormone from the shrimp, Pandalus borealis. Biochim Et Biophys Acta Protein Struct 439(1):17–25

    Article  CAS  Google Scholar 

  • Galván I, Solano F (2016) Bird integumentary melanins: biosynthesis, forms, function and evolution. Int J Mol Sci 17(4):520

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilchrist BM, Lee WL (1976) The incorporation of [14C] beta-carotene into the marine isopod Idotea resecata (Stimpson, 1857) and the biosynthesis of canthaxanthin. Comp Biochem Physiol B Comp Biochem 54(3):343–346

    Article  CAS  Google Scholar 

  • Gilchrist BM, Zagalsky PF (1983) Isolation of a blue canthaxanthin-protein from connective tissue storage cells in Branchinecta packardi pearse (crustacea: anostraca) and its possible role in vitellogenesis. Comp Biochem Physiol Part B Comp Biochem 76(4):885–893

    Article  Google Scholar 

  • Henning F, Jones JC, Franchini P et al (2013) Transcriptomics of morphological color change in polychromatic Midas cichlids. BMC Genomics 14(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuera-Ciapara I, Félix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46(2):185–196

    Article  CAS  PubMed  Google Scholar 

  • Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97(3):222–234

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Zhang L, Wang G et al (2022) De novo assembly transcriptome analysis reveals the genes associated with body color formation in the freshwater ornamental shrimps Neocaridina denticulate sinensis. Gene 806(145):929

    Google Scholar 

  • Hubbard JK, Uy JAC, Hauber ME et al (2010) Vertebrate pigmentation: from underlying genes to adaptive function. Trends Genet 26(5):231–239

    Article  CAS  PubMed  Google Scholar 

  • Josefsson L (1983) Chemical properties and physiological actions of crustacean chromatophorotropins. Am Zool 23(3):507–515

    Article  CAS  Google Scholar 

  • Kelsh RN, Brand M, Jiang YJ et al (1996) Zebrafish pigmentation mutations and the processes of neural crest development. Development 123(1):369–389

    Article  CAS  PubMed  Google Scholar 

  • Kindermann C, Hero JM (2016) Pigment cell distribution in a rapid colour changing amphibian (Litoria wilcoxii). Zoomorphology 135(2):197–203

    Article  Google Scholar 

  • Klein JM, Mohrherr CJ, Sleutels F et al (1994) Molecular cloning of two pigment-dispersing hormone (PDH) precursors in the blue crab Callinectes sapidus reveals a novel member of the PDH neuropeptide family. Biochem Biophys Res Commun 205(1):410–416

    Article  CAS  PubMed  Google Scholar 

  • Kleinholz LH, Rao KL, Riehm JP et al (1986) Isolation and sequence analysis of a pigment-dispersing hormone from eyestalks of the crab. Cancer Magister Biol Bulletin 170(1):135–143

    Google Scholar 

  • Lin S, Zhang L, Wang G et al (2022) Searching and identifying pigmentation genes from Neocaridina denticulate sinensis via comparison of transcriptome in different color strains. Comp Biochem Physiol d: Genom Proteom 42:100977

    CAS  Google Scholar 

  • Liu J, Zhang Y, Gui S et al (2016) Observation and regression models on body colour inheritance and development in crucian carp and carp. Aquac Int 24(4):1191–1199

    Article  Google Scholar 

  • Liu JH, Wen S, Luo C et al (2015) Involvement of the mitfa gene in the development of pigment cell in Japanese ornamental (Koi) carp (Cyprinus carpio L). Genet Mol Res 14(1):2775–2784

    Article  CAS  PubMed  Google Scholar 

  • Mantiri DMH, Nègre-Sadargues G, Charmantier G et al (1996) Nature and Metabolism of Carotenoid Pigments during the Embryogenesis of the European Lobster Homarus gammarus (Linne, 1758). Comp Biochem Physiol A Physiol 3(115):237–241

    Article  Google Scholar 

  • Masuoka Y, Maekawa K (2016) Gene expression changes in the tyrosine metabolic pathway regulate caste-specific cuticular pigmentation of termites. Insect Biochem Mol Biol 74:21–31

    Article  CAS  PubMed  Google Scholar 

  • McNamara JC (1979) Ultrastructure of the chromatophores of palaemon affinis heilprin (Crustacea, Decapoda) modifications in the shape of hindgut chromatophores associated with pigment movements. J Exp Mar Biol Ecol 40(2):193–199

    Article  Google Scholar 

  • Milograna SR, Bell FT, McNamara JC (2010) Signal transduction, plasma membrane calcium movements, and pigment translocation in freshwater shrimp chromatophores. J Exp Zool A Ecol Genet Physiol 313(9):605–617

    Article  PubMed  Google Scholar 

  • Miner BG, Morgan SG, Hoffman JR (2000) Postlarval chromatophores as an adaptation to ultraviolet radiation. J Exp Mar Biol Ecol 249(2):235–248

    Article  CAS  PubMed  Google Scholar 

  • Mykles DL, Hui JHL (2015) Neocaridina denticulata: a decapod crustacean model for functional genomics. Integr Comp Biol 55(5):891–897

  • Nilsson Sköld H, Aspengren S, Wallin M (2013) Rapid color change in fish and amphibians–function, regulation, and emerging applications. Pigment Cell Melanoma Res 26(1):29–38

    Article  PubMed  Google Scholar 

  • Oshima N (2010) Direct reception of light by chromatophores of lower vertebrates. Pigment Cell Melanoma Res 14(5):312–319

    Article  Google Scholar 

  • Parichy DM, Johnson SL (2001) Zebrafish hybrids suggest genetic mechanisms for pigment pattern diversification in Danio. Dev Genes Evol 211(7):319–328

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez DB, Simpson KL, Chichester CO (1973) The biosynthesis of astaxanthin XVII Intermediates in the conversion of β-carotene. Int J Biochem 4(21):213–322

    Article  CAS  Google Scholar 

  • Romero-Carvajal A, Turnbull MW, Baeza JA (2018) Embryonic development in the peppermint shrimp, Lysmata boggessi (Caridea: Lysmatidae). Biol Bull 234(3):165–179

    Article  CAS  PubMed  Google Scholar 

  • Schartl M, Larue L, Goda M et al (2016) What is a vertebrate pigment cell? Pigment Cell Melanoma Res 29(1):8–14

    Article  PubMed  Google Scholar 

  • Tang CH, Chen WY, Wu CC et al (2020) Ecosystem metabolism regulates seasonal bioaccumulation of metals in atyid shrimp (Neocaridina denticulata) in a tropical brackish wetland. Aquat Toxicol 225(105):522

    Google Scholar 

  • Temmerman L, Meelkop E, Schoofs L (2013) Pigment Dispersing Factor In: Handbook of Biologically Active Peptides .Elsevier. pp. 298–303.

  • Von Rintelen K, Cai Y (2009) Radiation of endemic species flocks in ancient lakes: systematic revision of the freshwater shrimp Caridina H. Milne Edwards (1837) (Crustacea: Decapoda: Atyidae) from the ancient lakes of Sulawesi, Indonesia, with the description of eight new species. Raffles Bull Zool 57(2):343–452

    Google Scholar 

  • Wald G, Nathanson N (1948) Crustacyanin, the blue carotenoid-protein of the lobster shell. Biol Bull 95(2):249

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang R, Xu C et al (2022a) Characterization and functional analysis of peroxiredoxin 4 gene in the Neocaridina denticulata sinensis. Fish Shellfish Immunol 122:162–169

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Cui X, Gong H et al (2022b) Characterization of the moult cycle in Neocaridina denticulata sinensis Kemp, 1918: the moulting frequency, moulting stages, and haemolymph ecdysteroid levels. Crustaceana 95(4):439–455

    Article  Google Scholar 

  • Zhang R, Wang Y, Xu C et al (2022) Characterization of peroxiredoxin from Neocaridina denticulata sinensis and its antioxidant and DNA protection activity analysis. Fish Shellfish Immunol 127:211–218

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhao Y, Zeng C (2007) Morphogenesis and variations in biochemical composition of the eggs of Macrobrachium nipponense (de Haan, 1849) (Decapoda, Caridea, Palaemonidae) during embryonic development. Crustac 80:1057–1070

    Article  Google Scholar 

Download references

Acknowledgements

We thank every partner who has put forward valuable comments.

Funding

This work was supported by a grant from the Natural Science Foundation of China (grant number 31702339) and the Science Foundation of Fujian Province (grant number 2020J01669).

Author information

Authors and Affiliations

Authors

Contributions

Xiqin Lu and Yuanchang Zhang performed the experiments, and Xiqin Lu wrote the main manuscript text. Lili Zhang and Yangjie Xie reviewed and edited the manuscript. Guodong Wang and Shiyu Huang designed the experiment. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lili Zhang or Yangjie Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Rare or protected animals were not included in the experiments of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhang, L., Wang, G. et al. The occurrence process of chromatophores in three body color strains of the ornamental shrimp Neocaridina denticulata sinensis. Zoomorphology 141, 283–295 (2022). https://doi.org/10.1007/s00435-022-00563-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-022-00563-7

Keywords

Navigation